reklam

31 Mart 2016 Perşembe

BÖLME VE BÖLÜNEBİLME

A) Bölme

Bölme işlemi
Bölme işleminde;
A = B.C + K  biçiminde gösterilir.
Bir bölme işleminde;
  1. K < B dir.
  2. K = 0 ise A sayısı B sayısına tam olarak bölünür.
  3. Kalan bölümden küçük ise bölen ile bölümün yerlerinin değiştirilmesi kalanı değiştirmez. 
A, B, c, d, e, f, birer tamsayı olmak üzere,
  • A nın c ile bölümünden kalan e,
  • B nin c ile bölümünden kalan d ise,
  • A + B nin  c ile bölümünden kala e + d,
  • A - B nin c ile bölümünden kalan e - d,
  • A.B nin c ile bölmünden kalan e.d,
  • An nin c ile bölümünden kalan en,
  • Kalan c den büyükse c ye tekrar bölünmelidir.
  • Kalan negatifse kalana pozitif olması için c nin katları eklenmelidir.
Örnek:
13 ile bölündüğünde bölümü 15, kalanı 8 olan sayı kaçtır ?
Çözüm:
İstenen sayıya x diyelim.
x = 13.15 + 8 = 203 tür. 
Örnek:
4ab üç basamaklı bir sayı olmak üzere, 4ab sayısı 26 ile tam bölünebildiğine ve bölüm 17 olduğuna göre, a + b değeri kaçtır ? 
Çözüm:
4ab = 26.17 =442
4ab = 442
Buna göre;
a = 4, b = 2 olduğu için,
a + b = 6 olur.

B)Bölünebilme Kuralları:

2 ile bölünebilme:
Bölünmek istenen sayının birler basamağı çift ise sayı 2 ye kalansız bölünür. Birler basamağı tek ise sayının 2 ile bölümünden kalan 1 dir.
3 ile bölünebilme:
Bölünmek istenen sayının rakamlarının toplamının 3 ile bölümünden kalan, o sayının 3 ile bölümünden kalana eşittir. Kalan 0 ise o sayı 3 ile tam bölünür.
4 ile bölünebilme:
Bölünmek istenen sayının son iki basamağını oluşturan sayıyının 4 ile bölümünden kalan, o sayının 4 ile bölümünden kalana eşittir. Kalan 0 ise o sayı 4 ile tam bölünüyor demektir.
5 ile bölünebilme:
Birler basamağı 0 yada 5 olan her tam sayı 5 ile kalansız bölünür. Sayının birler basamağının 5 ile bölümünden artan, kalanı verir.
7 ile bölünebilme:
Bölünmek istenen sayının rakamları sağdan sola doğru sırasıyla 1, 3,2 ile çarpılır ve bu çarpımlar üçerli gruplar halinde önce ( + ) ile sonra ( - ) ile çarpılıp toplanır. Toplamın 7 ile bölümünden kalan, sayının 7 ile bölümünden kalana eşittir. Kalan 0 ise sayının 7 ile tam bölündüğü sonucuna ulaşılır.
8 ile bölünebilme:
Bölünmek istenen sayının son üç basamağını oluşturan sayının 8 ile bölümünden kalan, o sayının 8 ile bölümünden kalana eşittir. Kalan 0 ise, o sayı 8 e kalansız bölünüyor demektir.
9 ile bölünebilme:
Bölünmek istenen sayının rakamlarının toplamının 9 ile bölümünden kalan, o sayının 9 ile bölümünden kalana eşittir. Kalan 0 ise o sayı 9 ile kalansız bölünür.
10 ile bölünebilme:
Bölünmek istenen sayının birler basamağındaki rakam, o sayının 10 ile bölümünden kalanı verir. Sayının 10 ile tam bölünebilmesi için birler basamağının 0 olması gerekir.
11 ile bölünebilme:
Bölünmek istenen sayının rakamları sağdan sola doğru +, -, +, -, +, -, ..... ile işaretlendirerek toplanır. Toplamın 11 ile bölümünden kalan, sayının 11 ile bölümünden kalana eşittir.
25 ile bölünebilme:
Bölünmek istenen sayının son iki basamağını oluşturan sayının 25 ile bölümnden kalan, o sayının 25 ile bölümünden kalana eşittir.
Dikkat edilirse 4, 8, 25 bölünebilme kuralı olarak benzerlik göstermektedir.
** Dikkat edilirse 3 ve 9 bölünebilme kuralı olarak benzerlik göstermektedir.
*** Dikkat edilirse 5 ve 10 bölünebilme kuralı olarak benzerlik göstermektedir.
Aralarında asal sayılara tam bölünebilen sayılar bu sayıların çarpımınada tam bölünür.
  • 6 ile tam bölünebilmesi için 2 ve 3 ile,
  • 12 ile tam bölünebilmesi için 3 ve 4 ile,
  • 15 ile tam bölünebilmesi için 3 ve 5 ile,
  • 18 ile tam bölünebilmesi için 2 ve 9 ile,
  • 20 ile tam bölünebilmesi için 4 ve 5 ile,
  • 24 ile tam bölünebilmesi için 3 ve 8 ile,
  • 28 ile tam bölünebilmesi için 4 ve 7 ile,
  • 30 ile tam bölünebilmesi için 3 ve 10 yada 5 ve 6 ile tam bölünmesi gerekir.
Örnek:
Beş basamaklı 42736 sayısının 3 ile bölümünden kalanı bulalım.
Çözüm:
4 + 2 + 7 + 3 + 6 = 22
22 nin 3 le bölümünden kalanı bulmalıyız.
2 + 2 = 4
4 ün üç ile bçlümünden kalan 1 dir.
Buna göre 42736 sayısının 3 ile bölümünden kalan 1 dir.
Örnek:
Üç basamaklı 736 sayısının sırasıyla 4, 5, 6, 7, 8, 9, 10, 11, ve 25 ile bölümünden kalanları bulalım.
Çözüm:
  • 36 sayısı 4 ün katı olduğu için, 736 sayısının 4 ile bölümünden kalan 0 dır.
  • 6 sayısının 5 ile bölümünden kalan bir olduğu için, 736 sayısının 5 ile bölümünden kalan dir.
  • 736 sayısı 2 ye tam bölünürken, 3 ile bölümünden 1 kalanını veriyor. 0 dan 5 e kadar olan sayılardan 2 ile tam bölünüp 3 ile bölündüğünde 1 kalanını veren sayı 4 tür. Dolayısıyla 736 sayısının 6 ile bölümünden kalan 4 tür.
  • 736 sayısını sırasıyla 1, 3, ve 2 sayıları ile çarpıp toplayıp çıkan sonunucun 7 ile bölümünden kalan, 736 nın 7 ile bölümünden kalana eşittir. (6.1) + (3.3) + (7.2) = 29 ve 29 sayısının 7 ile bölümünden kalan 1 olduğuna göre, 736 nın 7 ile bölümünden kalan dir.
  • 736 sayısının 8 ile tam bölünür. Kalan 0 dır.
  • (7 + 3 + 6) = 16 olduğundan ve 16 nın 9 ile bölümünden kalan 7 olduğu için 736 sayısının 9 ile bölümünden kalan 7dir.
  • 736 sayısının son basamağı 6 olduğu için, 736 sayısının 10 ile bölümünden kalan 6 dır.
  • 736 sayısının 11 ile bölümünden kalan (7 + 6) -3 = 10 dur.
  • 36 sayısının 25 ile bölümünden kalan 11 olduğu için, 736 sayısının 25 ile bölümünden kalan 11 dir.
Örnek:
634 sayısının 18 ile bölümünden kalan kaçtır ?
Çözüm:
634 sayısı 2 ile tam bölünürken 9 ile bölümünden 4 kalanını veriyor. 0 dan 17 ye kadar olan sayılardan 2 ye tam bölünüp 9 ile bölümünden 4 kalanını veren sayı 4 tür. 634 sayısı 17 ile bölümünden 4 kalanını verir.
Örnek:
120 sayısının asal çarpanlarını bulalım.

Bir Doğal Sayının Tam Bölenleri

Çözüm:
120 = 23.3.5 tir.
120 nin asal çarpanları 2, 3, ve 5 tir.
Örnek:
2100 sayısının asal çarpanlarını bulalım.
Çözüm:
2100 = 21.100
          = 3.7.10.10
          = 3.7.2.5.2.5 = 22.3.52.7
olduğu için 2100 ün 4 tane asal çarpanı vardır. Bunlar; 2, 3, 5, 7 dir.

Bir Doğal Sayının Tam Bölenlerinin Sayısı

Bir A sayısının asal çarpanlarına ayrılmış şekli;
A = xa.yb.zc olsun.
  • A sayısının pozitif tam bölenlerinin sayısı = (a + 1)(b + 1)(c + 1) dir.
  • A sayısının tam sayı bölenlerinin sayısı = 2.(a + 1)(b + 1)(c + 1) dir.
  • A sayısının tam sayı bölenlerinin toplamı sıfırdır.
  • A sayısının asal bölenlerinin sayısı 3 tür. Bunlar x, y, z dir.
Örnek: 
72 sayısının pozitif tam bölenlerinin sayısı kaçtır ?
Çözüm:
72 = 8.9 = 23.32
72 nin pozitif tam bölenlerinin sayısı = (3 + 1).(2 + 1) = 12 dir.

TABAN ARİTMETİĞİ

TABAN ARİTMETİĞİ NEDİR?

Bir sayı sisteminde sayının basamak değerlerini göstermek için kullanılan düzenetaban denir.
T taban olmak üzere,
(abcd)= a . T3 + b . T2 + c . T + d dir.
Burada,
  •  T, 1 den büyük doğal sayıdır.
  •  a, b, c, d rakamları T den küçüktür.
  •  Taban belirtmeden kullandığımız sayılar 10 luk tabana göredir.
  •  (abc, de)T = a . T 2 + b . T + c + d . T – 1 + e . T – 2dir.

1. Onluk Tabanda Verilen Sayının Herhangi Bir Tabana Çevrilmesi
Onluk tabanda verilen sayı, hangi tabana çevrilmek isteniyorsa, o tabana bölünür. Bölüm tekrar tabana bölünür. Bu işleme bölüm 0 olana kadar devam edilir.
Ardışık olarak yapılan bu bölmelerden kalanlar sondan başlayarak (ilk kalan son rakam olacak şekilde) sıralanmasıyla istenen sayı oluşturulur.
2. Herhangi Bir Tabanda Verilen Sayının 10 luk Tabana Çevrilmesi
Herhangi bir tabandan 10 luk tabana geçirilirken verilen sayı, ait olduğu tabana göre çözümlenir.
3. Herhangi Bir Tabanda Verilen Sayının Başka Bir Tabanda Yazılması
Herhangi bir tabanda verilen sayı önce 10 tabanına çevrilir. Bulunan değer istenen tabana dönüştürülür.
4. Taban Aritmetiğinde Toplama, Çıkarma, Çarpma İşlemleri
Değişik tabanlarda yapılacak işlemler 10 luk sistemdekine benzer biçimde yapılır.
T tabanında verilen sayılarda toplama ve çarpma işlemleri bilinen cebirsel işlem gibi yapılır, ancak sonuç T den büyük çıkarsa içinden T ler atılıp kalan alınır. Atılan T adedi elde olarak bir sonraki basamağa ilave edilir.
Çıkarma işlemi yapılırken 10 luk sistemdekine benzer biçimde, bir soldaki basamaktan 1 (bir) almak gerektiğinde, bu aktarıldığı basamağa katkısı tabanın sayı değeri kadardır. Fakat alındığı basamaktaki rakam 1 azalır. 


Herhangi bir " p " tabanında yazılmış bir sayının 10 tabanında karşılığını bulmak:
Bir sayının herhangi bir " p " tabanında yazıldığı belirtileceği zaman, ( abc . . . )pyazılışı kullanılır.
Bu sayının 10 tabanındaki karşılığını bulmak, bu sayıyı çözümlemek demektir.
Bir " p " tabanında yazılmış bir sayının çözümlenmesi işlemi, 10 tabanındaki çözümleme işlemi gibidir. Sadece 10 sayısı yerine " p " sayısı kullanılır.
İki basamaklı bir ( ab )p sayısı a.p + b şeklinde,
üç basamaklı bir ( abc )p sayısı a.p2 + b.p + c şeklinde,
dört basamaklı bir ( abcd )p sayısı a.p3 + b.p2 + c.p + d şeklinde çözümlenir ve
basamak sayısı arttıkça bu durum benzer şekilde devam eder.
( abcd )p = a.p3 + b.p2 + c.p + d

ÖRNEKLER :

1) ( 702 )9
= 7.92 + 0.9 + 2
= 7.81 + 0 + 2
= 567 + 2
= 569





2) ( 702 )8
= 7.82 + 0.8 + 2
= 7.64 + 0 + 2
= 448 + 2
= 450





3) ( 343 )5
= 3.52 + 4.5 + 3
= 3.25 + 20 + 3
= 75 + 23
= 98





4) ( 1011 )2
= 1.23 + 0.22 + 1.2 + 1
= 8 + 0 + 2 + 1
= 11






5) ( 1011 )3
= 1.33 + 0.32 + 1.3 + 1
= 27 + 0 + 3 + 1
= 31






6) ( 1000 )7
= 1.73 + 0.72 + 0.7 + 0
= 343 + 0 + 0 + 0
= 343




10 tabanında yazılmış bir sayının bir " p " tabanında yazılışını bulmak :
10 tabanında yazılmış sayı A olsun. A sayısının p tabanındaki yazılışını bulmak için, A sayısı p ile bölünür. Bu bölmede elde edilen bölüm, p sayısına eşit ya da p sayısından büyükse, bölüm p ile bölünür. Bu işleme, elde edilen bölüm p sayısından küçük oluncaya kadar devam edilir. Elde edilen bölüm p sayısından küçük olduğu zaman, bu bölüm ve tüm bölme işlemlerindeki kalanlar, sondan başa doğru, ilk bölme işlemindeki kalan birler basamağına gelecek şekilde sıralanır. Böylece A sayısının p tabanında yazılışı elde edilmiş olur.
Bu yolla 96 sayısının 8 , 7 ve 6 tabanlarındaki yazılışlarını ayrı ayrı bulalım.
1) 96 sayısının 8 tabanında yazılışı:
96 sayısı 8 ile bölününce bölüm 12, kalan 0 olur.
96 = 8 . 12+ 0
Bölüm olan 12 sayısı den büyüktür. 12, 8 ile bölünür. Bu bölme işleminde de bölüm 1, kalan 4 olur.
12 = 8 . 1 + 4
Şimdi bölüm olan 1 sayısı den küçüktür.
Son bölüm olan 1 sayısı en başa, ilk kalan olan 0 sayısı en sona gelecek şekilde, 1, 4 ve 0 sayıları yanyana yazılır. Böylece 96 sayısının 8 tabanında yazılışı 140 olarak elde edilmiş olur.
96 = ( 140 )8

2) 96 sayısının 7 tabanında yazılışı:
96 = 7 . 13 + 5
13 = 7 . 1 + 6
96 = ( 165 )7
3) 96 sayısının 6 tabanında yazılışı:
96 = 6 . 16 + 0
16 = 6 . 2 + 4
96 = ( 240 )6

Bir bölme işleminde, kalan daima bölenden küçüktür. Buna göre, bir sayının bir p tabanındaki yazılışında, kullanılan sayıların hepsi " p " den küçük olmalıdır.
( abcd )p yazılışında a, b, c ve d, " p "
den küçük sayılar olmalıdır.
Örneğin ( 240 )yazılışı yanlıştır, çünkü sayı tabanı 3 olduğu halde, sayı yazılırken üçten büyük olan 4 kullanılmıştır.
Bunun gibi, ( 2406 )yazılışı da yanlıştır, çünkü sayı tabanı 6 olduğu halde, sayı yazılırken de 6 kullanılmıştır.
Herhangi bir p tabanında yazılmış ondalık bir sayının 10 tabanında karşılığını bulmak:
10 tabanında yazılmış bir ondalık sayı, örneğin 37,254 sayısı aşağıdaki gibi çözümlenir :
37,254 = 3 . 10 + 7 + 2 . 10-1 + 5 . 10-2 + 4 . 10-3
Bunun gibi, herhangi bir p tabanında yazılmış ondalık bir sayının 10 tabanındaki karşılığını bulmak, yani bu sayıyı çözümlemek için, taban olan p sayısı, yukarıdaki açılımda 10 sayısının kullanıldığı gibi kullanılır. Örneğin ( 37,254 )8 = 3 . 8 + 7 + 2 . 8-1 + 5 . 8-2 + 4 . 8-3 = 31,3359375 olur.

( ab,cde )p = a.p + b + c.p-1 + d.p-2 + e.p-3

30 Mart 2016 Çarşamba

ÇARPANLARA AYIRMA

Çarpanlara Ayırma Yöntemleri

1) Ortak Çarpan Parantezine Alma

Verilen ifadenin her teriminde ortak bir çarpan varsa, ifade bu ortak çarpanın parantezine alınabilir.
A(x).B(x) + A(x).C(x) = A(x).[B(x) + C(x)] tir.


2) Gruplandırarak Çarpanlarına Ayırma

Verilen ifadenin bütün terimlerinde ortak bir çarpan yoksa, ortak çarpanı bulunan terimler bir araya getirilerek bu terimlerle elde edilen her grup ayrı ayrı ortak paranteze alınır.

3) Özdeşliklerden Yararlanarak Çarpanlara Ayırma

İçerdikleri bilinmeyenlere verilen her sayı değeri için sağlanan eşitliklere özdeşlik denir.



5. Terim Ekleyip Çıkarma Yoluyla Çarpanlara Ayırma

Bazı ifadeler uygun bir terim eklenerek veya çıkarılarak çarpanlara ayrılabilir.









TEMEL KAVRAMLAR

TEMEL KAVRAMLAR


Rakam
Sayıları ifade etmeye yarayan sembollere rakam denir.
{0, 1, 2, …,9}
kümesinin her elemanı rakamdır.

Örnek:
a ve b birer rakamdır.
2a – 3b = 2
olduğuna göre, a nın alabileceği değerler toplamı kaçtır?
A) 10     B) 11    C)12    D) 13     E) 14
Çözüm:
2a – 3b = 2
2a = 2 + 3b
a = 1 + 3.b/2dir.
a bir rakam olduğundan b 0, 2, 4, 6 ve 8 olmalıdır.
b = 0 için a = 1
b = 2 için a = 4
b = 4 için a = 7
b = 6 için a = 10 (rakam değil)
O halde, a nın alabileceği değerler toplamı:
1 + 4 + 7 = 12 dir.
Yanıt C

Sayı
Rakamların bir çokluğu belirtecek şekilde bir araya gelmesiyle oluşan ifadelere sayı denir.

Örnek:
6, 26, – 100, …
Uyarı:Her rakam bir sayıdır, fakat her sayı bir rakam değildir.

Örnek:
8 hem rakam hem sayıdır.
28 sayıdır fakat rakam değildir.

Doğal Sayılar (N)
N= {0, 1, 2, …}
kümesinin her bir elemanına doğal sayı denir.

Sayma Sayıları(Pozitif Doğal Sayılar)
S = N+ = {1, 2, 3, …}
kümesinin her bir elemanına sayma sayısı (pozitif doğal sayı) denir.

Tam Sayılar (Z)
Z = {…, –2, –1, 0, 1, 2, …}
kümesinin her bir elemanına tamsayı denir.
a) Pozitif Tamsayılar (Z+)
Z+ = {1, 2, 3, …}
kümesinin her bir elemanına pozitif tamsayı denir.
b) Negatif Tamsayılar (Z–)
Z– = {…, –3, –2, –1}
kümesinin her bir elemanına negatif tamsayı denir.
Uyarı:Sıfır bir tamsayıdır.Sıfır tamsayısı işaretsiz olduğundan ne pozitif  ne de negatiftir.